

Weiterbildungskurse 2022

Druckprüfung

Gesamtkontext und theoretische Grundlagen(Tag 1)

Praxisdemonstration (Tag 2)

Live-Demo – Druckprüfung

Franz Störch

CSDINGENIEURE*

Thomas Krohse

Markus Kreienbühl

Markus Portmann

Marco Decurtins

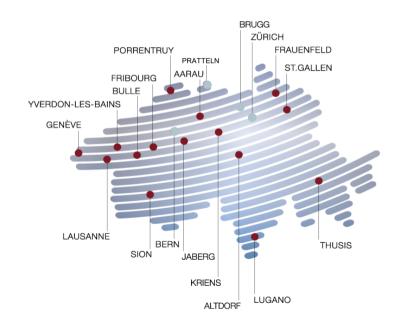
Referent

Franz Störch

Dipl.-Ing., Stv. Geschäftsleiter Umwelttechnik f.stoerch@csd.ch

CSD Ingenieure AG

Brugg - Zürich - Pratteln - Bern


Franz Störch

Einleitung

CSDINGENIEURE*

- 1970 gegründet
- ♣ 27 Niederlassungen in der ganzen Schweiz
- → 700 MA in 80 Umwelt-Fachgebieten
- ♣ Interdisziplinärstes Ingenieurbüro in CH
- ...Geologie, Hydrogeologie, Trinkwasser, Siedlungsentwässerung, Abwasser,....
- ♣ Trinkwasser ca. 40 MA
- Beratung, Expertisen und Gutachten, Projektdurchführung inkl. Bauleitung

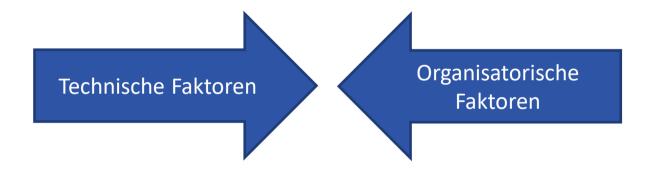
Praxisdemonstration

- 10' Einleitung
- 35' Gerätetechnik
- 35' Beschleunigtes Normalverfahren
 - Füllen Beruhigen Entlüften

- 35' Kontraktionsverfahren
 - Temperatureinfluss
 - Sichtprüfung
- 35' Normalverfahren
 - Sicherheitsaspekte
- 15' Fazit und Fragen

Ziel der Druckverlustprüfung

- ⇒ Sicherstellung einer hohen Ausführungsqualität
- ⇒ Wirtschaftlichkeit der Prüfung


- Nachhaltigkeit.
- Langfristigkeit.
- Generationenübergreifend.

Elemente einer erfolgreichen Druckverlustprüfung:

- Eine gute Planung und Ausschreibung
- Kontrolle auf der Baustelle
- Die richtige Wahl des Prüfverfahrens
- Die richtige Messtechnik

Die Wahl des Prüfverfahrens hängt **technisch** ab von:

- Grundmaterial der Leitung (Guss, Stahl, PE)
- Auskleidung
- Durchmesser
- Pumpe für die Druckprüfung (Erreichen des STP beim Kontraktionsverfahren)

Die Wahl des Prüfverfahrens hängt organisatorisch ab von:

- Prüfdauer Verfahren dauern unterschiedlich lang
- Prüfabschnitt Gesamtvolumen
- Materialwechsel

Aus wirtschaftlicher Sicht ist es sinnvoll, das optimale Verfahren pro Prüfabschnitt anzuwenden!

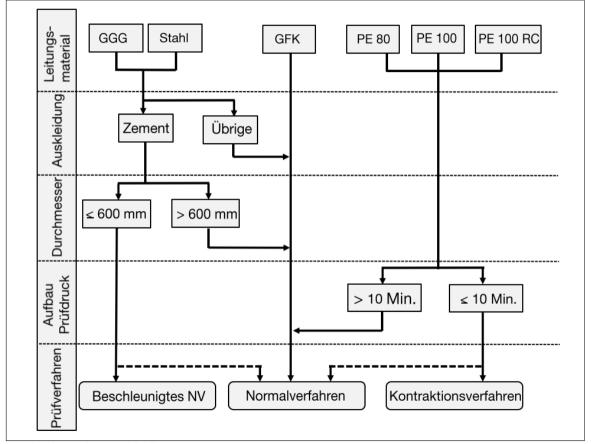
Verfahrensübersicht

W4 d, Ausgabe März 2013, Teil 3 Bau und Prüfung

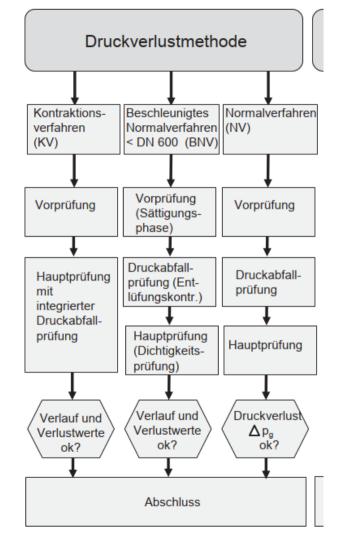
- Beschleunigtes Normalverfahren für Duktilguss- und Stahlleitungen mit Zementmörtelauskleidung bis DN 600 => NEU: teilgesättigt und gesättigt!
- **Kontraktionsverfahren** für Kunststoffleitungen bis Nennweite DN 400 und Volumen bis 20 m3 => **NEU: 10 min Druckaufbauzeit!**
- Normalverfahren für alle Rohrleitungen aus duktilem Gusseisen oder Stahl mit und ohne Zementmörtelauskleidung, aus Kunststoff sowie glasfaserverstärktem Kunststoff GFK

Praxisdemonstration

Zeitbedarf – Vergleich der einzelnen Verfahren


Beschleunigtes Normalverfahren neu: 3-4 hr

Kontraktionsverfahren ca. 3–4 hr


Normalverfahren bis zu 24 hr VP, bis zu 24 hr HP

Verfahrensübersicht

6. Druckprüfverfahren und Dokumentation

Prüfung ist nur so gut wie die eingesetzten Prüfgeräte es erlauben.

Prüfung ist nur so gut wie die eingesetzten Prüfgeräte es erlauben.

Weiterbildungskurse 2022

2. Gerätetechnik für die Druckprüfung von Wasserleitungen

Armaturen – Druckprüfungen - Rohrabsperrtechnik

- Verbrauchs-/Investitionsgüter für die Gas-/ Wasserversorgungen
- Dienstleister f
 ür spezielle Projekte
- Geräteservice und Kalibrierung
- Schulungen, Dozent beim SVGW
- Geschäftsinhaber der KROHSE GmbH
- Heizungs-/Lüftungsbauer, Sanitärinstallateur
- Technischer Kaufmann mit eidg. Fachausweis
- CAS (MAS) in Energiewirtschaft und erneuerbare Energien

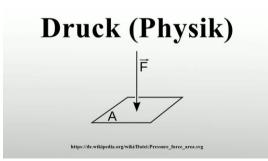
2.1 Vorbereitung

Warum Druckprüfungen?

- Rohre und Anlagenteile müssen vor Inbetriebnahme und nach Reparatur einer Druckprüfung unterzogen werden
- Festigkeitstest, Dichtheitstest, Spannungsabbau
- Gründe:
 - Betriebssicherheit
 - Gefahrenabwehr
 - Umweltschutz
 - Kostenoptimierung

2.1 Vorbereitung

- Sicherheitsvorkehrungen treffen
 - Keine Arbeiten im Graben, die nicht im Zusammenhang mit der Prüfung stehen
 - Durchführung bei <u>geschlossenen</u> Belüftungsarmaturen und <u>geöffneten</u> Absperrarmaturen


- Eventuell die zu pr
 üfende Leitung mit Verf
 üllmaterial abdecken
- Rohrwandtemperatur darf nicht über 20°C betragen
- Personal muss über auftretende Kräfte unterrichtet werden
- Luftfreies Füllen (sinnvoll ist ein Molcheinsatz)
 - Gleichzeitige Zugabe von Desinfektionsmittel möglich
- Bestimmung des Prüfdrucks

2.1 Vorbereitung

- Parameter der Rohrleitung
 - Material
 - Dimension
 - Länge
- Bestimmung der Methode (abhänging vom Prügerät)
 - Wasserverlustmethode
 - Druckverlustmethode
 - Normalverfahren
 - Kontraktionsverfahren
 - Beschleunigtes Normalverfahren

2.2 Anschlusstechnik

- Saubere Wasserschläuche für Spülung, Befüllen und Druckaufbau
- KTW-Zulassung laut SVGW nicht zwingend
- Geeignete Verbindungstechnik
 - Geka
 - Storz

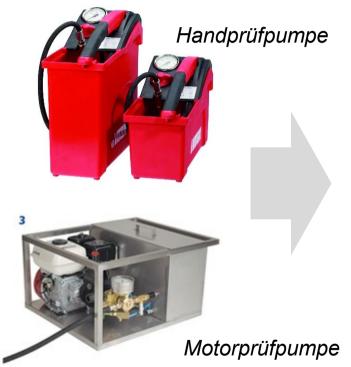
2.2 Anschlusstechnik

Realität!

Option!

2.2 Anschlusstechnik

- Gas- und Trinkwasser-Versorgungsleitungen
 - Individuelle Bestückung nach Kundenwunsch
 - Robuster, baustellentauglicher Kunststoffkoffer, IP67
 - Massgeschnittene Schaumeinlage
 - Hausanschluss-Zubehör ebenfalls integrierbar



2.3 Manuelle Druckprüfungen

Manometer (analog)

Skalenteilung 0.1 bar

oder

Bandschreiber

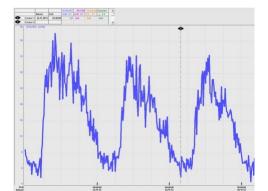
2.3 Manuelle Druckprüfungen

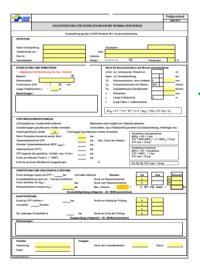
- Elektronisches Druckprüfgerät (kalibriert) mit Temperatursensor
 - Zur Messung der Rohrwand-/ Erdbodentemperatur

Auflösung von 0.01 bar bzw. 0.1°C

ausserdem

Datenlogger (kalibriert)


2.3 Manuelle Druckprüfungen



PC mit Auswertesoftware

Protokoll vom:

- SVGW
- VKR
- GIS-Dokumentenmanagement

Leitung dicht!

2.4 Vollautomatische Druckprüfungen

PMS3000 Dichtheitsprüfkoffer für Gas, Wasser, Abwasser etc.

- Robuster, akkubetriebener, baustellentauglicher Prüfkoffer mit grafikfähigem
 7"-Touch-Farbdisplay
- Protokolldrucker mit 114 mm-Druckbreite, grafikfähiger Thermoausdruck als Prüfprotokoll (Text + Graphik) direkt auf der Baustelle
- Drucksensor, Messbereich 0-35 bar absolut, integriert im Prüfkoffer
- Prüfablauf-Software kann nach Kundenwunsch bestückt werden
- Externer Temperatursensor zur Messung der Rohrleitungs- bzw.
 Erdbodentemperatur, Messbereich -10 ... +40 °C
- Keine Auswertesoftware auf dem PC nötig: Protokolle im PDF und CSV werden im PMS erstellt (per USB downloaden)

2.4 Vollautomatische Druckprüfungen

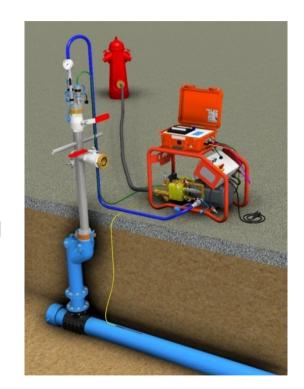
Prüfabläufe

 Prüfabläufe lassen sich jederzeit nachträglich durch den Endkunden aufspielen (über USB-Anschluss auf interne SD-Karte)

- Prüfabläufe sind nur auf EINEM Gerät lauffähig (Seriennummer PMS3000 im Prüfablauf codiert)
- Kunde hat nur genau die Pr

 üfabläufe, welche er auch ben

 ötigt
 - einfache Bedienung
 - Kostenoptimierung



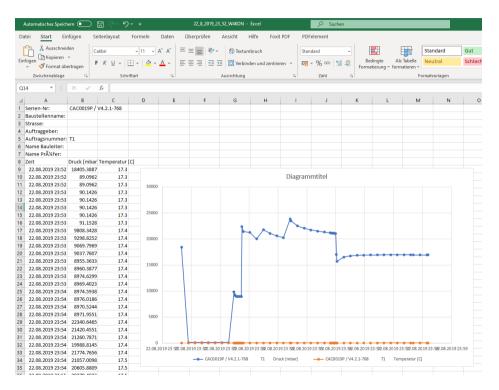
2.4 Vollautomatische Druckprüfungen

Kunden-Vorteile

- Vollautomatisch durch PMS3000 gesteuerte Pumpen
- Automatischer Druckaufbau und Druckhaltephase
- Integrierte Druckablassvorrichtung (ADAMM) mit automatischer Wassermengenmessung und Protokollierung der Wassermenge im Prüfprotokoll
- Alle Arbeiten ausserhalb des Rohrgrabens, dadurch erhöhte Arbeitssicherheit
- Robuste, langlebige Kolbenpumpentechnik

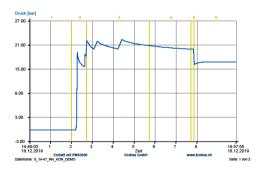
2.4 Vollautomatische Druckpumpen

Optimales Anschlusszubehör


1. Messtechnik PMS3000 35 bar **EPP15-14-025 ADAMM** 4. Anschlusstechnik Anwendung Überfluhhydrant + Storz C Legende: ---- schwarz - druckführende Teile,

EPP40-68-025 ADAMM

EPP22-30-025 ADAMM


2.5 Protokollieurung von Druckprüfungen

CSV-Datei zur Verarbeitung im Excel

PDF-Ausdruck

2.6 Druckprüfung mit Luft

- Möglich ???
 - Ja !!!
 - Aber . . .
 - Lebensmitteltaugliche ölfreie Kompressoren oder Stickstoff
 - Entsprechende Adapter und Schläuche
 - Empfehlung: Nur für kurze Teilstrecken mit wenig Volumen als Zwischenprüfung
 - Viel höheres Unfallrisiko als beim Wasser Luft wird beim Druckaufbau komprimiert

2.7 Kalibrieren

- jährliche Kalibrierung
- Richtlinie: DAkkS-DKD-R 6-1 "Kalibrierung von Druckmessgeräten,
- Prüfung der Referenzgeräte: Prüfnormale auf nationale, internationale Grössen rückführbar
- Anerkannt durch Deutsche Akkreditierungsstelle (DAkkS) gemäß der Norm DIN EN IEC 17025

- werkseigene Prüfmittelüberwachung
 Referenzgeräte kalibriert!
- Im Rahmen der ISO 9001 Zertifizierung durch Dritte Stellen in Audits

Prüfen auch Sie Ihre Wasserleitungen, unsere Ressourcen werden es Ihnen danken!

Fragen oder Anregungen zur Prüfgerätetechnik?

Weiterbildungskurse 2022

Praxis-Demo Druckprüfung

3. Beschleunigtes Normalverfahren

Füllen – Beruhigen - Entlüften

Referent

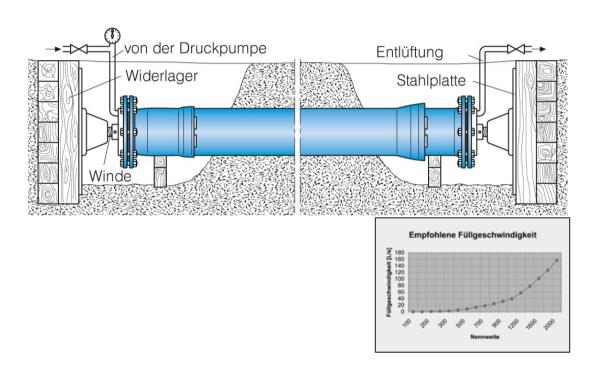
Markus Kreienbühl

Technischer Berater m.kreienbuehl@hagenbucher.ch

TMH Hagenbucher AG

Friesstrasse 19 8050 Zürich

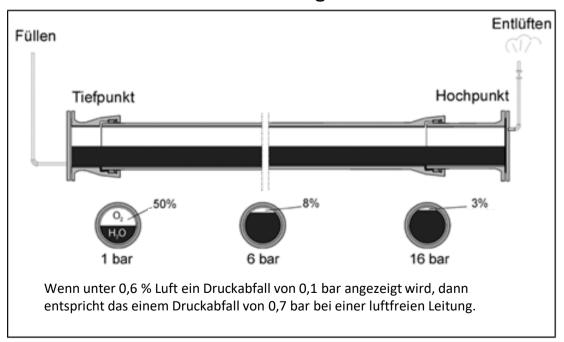
Markus Kreienbühl



Druckproben an Gussleitungen

- Füllen der Wasserleitung
- Problematik von Lufteinschlüssen
- Druckprüfung mit dem beschleunigten Normalverfahren

Füllen der Wasserleitung

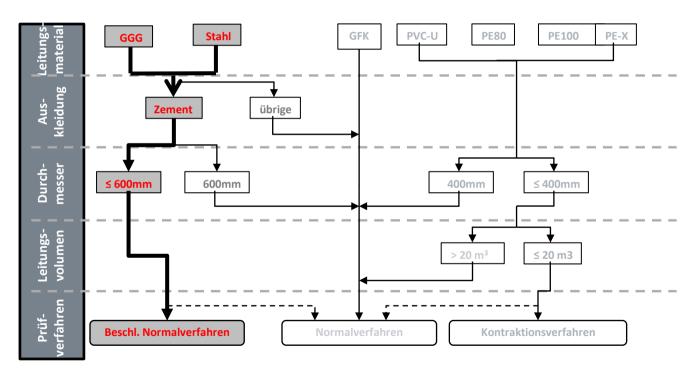

Füllen der Wasserleitung:

- Füllen vom Leitungstiefpunkt aus
- Grosse Entlüftungsstelle
- Luftfreie Füllung

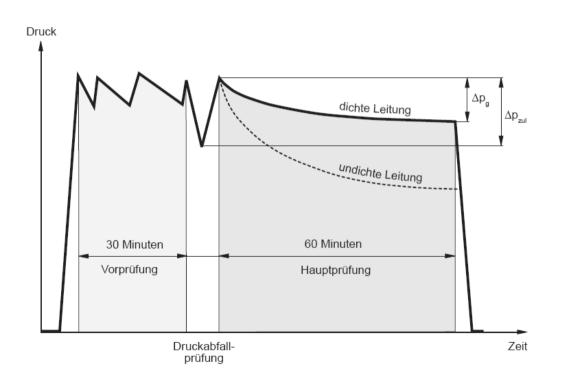
Erstaunlich und wichtig!

Einfluss von Luft auf das Prüfergebnis

Praktische Beispiele



Praktische Beispiele



Druckprüfung nach EN 805	Beschleunigtes Normalverfahren nach W 400-2	Normalverfahren nach W 400-2			
Für alle DN und für alle Prüfdrücke	Für DN ≤ 600 und für Prüfdrücke ≤ 21 bar	Für alle DN und für alle Prüfdrücke			
Vorprüfung	Vorprüfung (= Sättigungsphase)	Vorprüfung			
$OP \le Prüfdruck p \le STP$	Prüfdruck: p = STP (konstant d. Nachpumpen)	Prüfdruck: p = STP			
Prüfzeit: t= vom Planer festzulegen	Prüfzeit: t = 0,5 Std.	Prüfzeit: t= 24 Std.			
Druckabfallprüfung	Druckabfallprüfung	Druckabfallprüfung			
	a) Wasserverlustmethode	a) Wasserverlustmethode			
$\Delta V_{\text{mex}} = 1.5 \times V \times \Delta p \times \left[\frac{1}{E} + \frac{D}{e \times E} \right]$	$\Delta V = 0,1 \times f \times \pi \times ID_2 \times L \times \Delta p \times \left[\underbrace{1}_{W} + \underbrace{1}_{S} \times \underbrace{E}_{R} \right]$	$\Delta V = 0.1 \times f \times \pi \times ID_{1} \times L \times \Delta p \times \begin{bmatrix} 1 & + ID \\ E & s \times E \\ w & s \end{bmatrix}$			
	f=3	f=3			
$\Delta V \leq \Delta V_{max}$	$\Delta V \leq \Delta V_{zut}$	$\Delta V \leq \Delta V_{zut}$			
	b) Druckverlustmethode	b) Druckverlustmethode			
	$\Delta V_{of} = (DN \times L) / (100 k)$	$\Delta V^* = 0,1 \times 1,5 \times \pi \times ID_2 \times L \times \Delta p \times \left[\frac{1}{s} + \frac{ID}{s \times E} \right]$			
		[*]) (entspricht ΔV _{max} in EN 805)			

Beschleunigtes Normalverfahren nach W 400-2 Für DN ≤ 600 und für Prüfdrücke ≤ 21 bar Vorprüfung (= Sättigungsphase)	Beschleunigtes Nor nach W 400-2 ΔV _{erf} der Leitung ei hörigen Druckabfa	ntnehmen u. zuge-	Beschleunigtes Normalverfahren nach W 400-2 b) Druckverlustverfahren Prüfdruck: p = STP		
Prüfdruck: p = STP (konstant d. Nachpumpen) Prüfzeit: t = 0,5 Std. Druckabfallprüfung a) Wasserverlustmethode	80 100 150	∆p _{min.} [bar] 1,4 1,2 0,8	Prüfzeit: t = 1 Std Prüfkriterium: (∆p aus Druckabfallprüfung wird ∆pzu in Hauptprüfung) ∆p = abnehmende Tendenz und		
$\Delta V = 0,1 \times f \times \pi \times ID_{2} \times L \times \Delta p \times \left[\frac{1}{E} + \frac{ID}{W} \right]$ $\mathbf{f=3}$	200 300 400	0,6 0,4 0,3	$\Delta p \leq \Delta p_{zot}$		
$\Delta V \le \Delta V_{\text{Zul}}$ b) Druckverlustmethode $\Delta V_{erf} = (DN \times L) / (100 \text{ k})$	500	0,2			
21 erf = (DIV ^ L) / (100 K)	∆p≥pmin (Nachweis für ausreichende Entlüftung)				

- Während der Vorprüfung (30 Min.) soll durch ständiges Nachpumpen des Prüfdrucks (STP) ein hohes Sättigungsmass erzielt werden.
- Die Druckabfallprüfung dient der Entlüftungskontrolle der Rohrleitung. Lufteinschlüsse in der Rohrleitung können zu falschen Messergebnissen führen oder kleine Leckagen überdecken. Dazu wird der Leitung bei Prüfdruck (STP) ein Wasservolumen ΔV_{erf} entnommen und der Druckabfall Δp gemessen. Das zu entnehmende Wasservolumen wird wie folgt errechnet:

 $\Delta V_{erf} = (DN \times L) / (100 \times k)$ k = Proportionalitätsfaktor = 1m/ml Die Leitung gilt als ausreichend entlüftet, wenn bei der Entnahme des berechneten Wasservolumens der Druckabfall grösser oder gleich dem in der vorhergehenden Tabelle bezeichneten Grenzwert für Δp_{min} ist.

- Für die Dichtheitsprüfung (60 Min.) ist der Prüfdruck nach der Druckabfallprüfung wieder herzustellen.

Dichtheitsprüfung

Die Leitung gilt als dicht, wenn der Druckabfall Δp in gleichen Zeitabschnitten ständig abnimmt und über die Dauer der Dichtheitsprüfung den in der Druckabfallprüfung ermittelten Wert Δp_{zul} nicht übersteigt.

Dichtheitsprüfung
60 min

dicht Δp undicht

Die Prüfdauer beträgt eine Stunde

Fragen oder Anregungen zum beschleunigten Normalverfahren?

Weiterbildungskurse 2022

Praxis-Demo Druckprüfung

4. Normalverfahren und Sicherheitsaspekte bei der Druckprüfung

Referent

Marco Decurtins

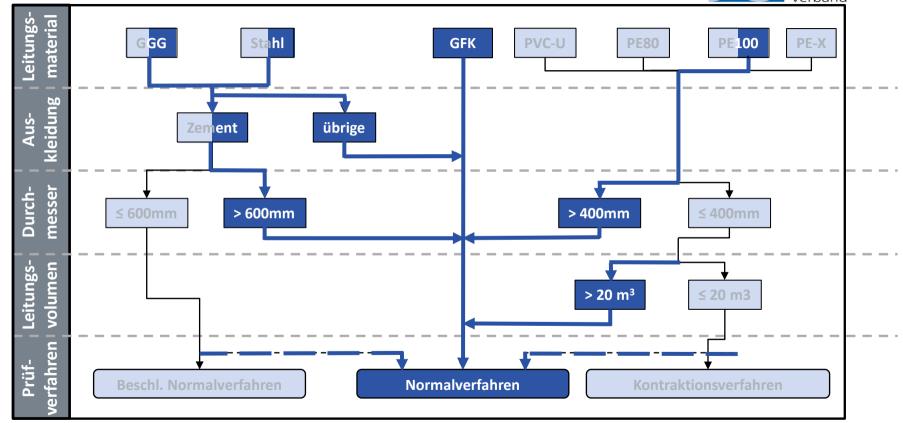
Prokurist / Verkaufsleitung / Mitglied der Geschäftsleitung marco.decurtins@wildarmaturen.ch

Wild Armaturen AG

Buechstrasse 31 8645 Jona-Rapperswil

Marco
Decurtins
Normalverfahren

Druckprobe



Organisation Wild Armaturen AG, Jona-Rapperswil

Verfahrensübersicht

Richtlinien Druckprobe

SVGW-Richtlinie W4:

Jede Rohrleitung Dichtheitsprüfung durchführen!

- In der Regel kommt die Druckverlustmethode zur Anwendung
- Das Normalverfahren NV bietet die grösste Prüfgenauigkeit
- NV grundsätzlich für ALLE Werkstoffe und Nennweiten geeignet

Richtlinien Druckprobe

SVGW-Richtlinie W4:

- Bei GGG und Stahl zwingend immer Normalverfahren:
 - Mit ZMA ab DN 700
 - Ohne ZMA alle Nennweiten
- GFK-Rohre zwingend immer im Normalverfahren
- Bei PE-Rohren zwingend Normalverfahren wenn:
 - Nennweite > DN 400 oder Volumen > 20m³

Gesamte Rohrleitung inkl. Formstücke, Verbindungen, Armaturen, Schubsicherungen und/oder Widerlager prüfen!

Prüfdruck bestimmen

MDP= Systembetriebsdruck

STP = Systemprüfdruck

Bei nicht berechnetem Druckstoss (meist der Fall) gilt:

$$STP = 1.5 \cdot MDP_a$$

$$STP = 1.5 \cdot MDP_a$$
 oder $STP = MDPa + 5.0 bar$

Davon ist der jeweils kleinere Wert zu wählen!

Maximalwerte Systemprüfdruck STP nach W4:

PE100 SDR17: ≤ 12 bar STP_{20°C}

PE100 SDR11: STP_{20°C} ≤ 21 bar

15 bar ■ GFK: STP

GGG und Stahl: STP > 21 bar

Normalverfahren - Ablauf

Vorprüfung bzw. Sättigungsphase (Ziel Leitung stabilisieren)

- Leitung vom Tiefpunkt langsam befüllen, am Hochpunkt entlüften und verschliessen
- STP aufbringen, während der Vorprüfdauer halten (regelmässig spätestens nach Druckabfall von 0,5 1 bar durch Nachpumpen wiederherstellen)
- Druckschwankungen bei der Vorprüfung dürfen 1 2 bar nicht überschreiten
- Dauer Vorprüfung ist abhängig vom Werkstoff:
 GGG + Stahl ZMA 24h / GGG + Stahl KST 1h / GFK 6h / PE 12 h

Normalverfahren - Ablauf

Druckabfallprüfung (Entlüftungskontrolle)

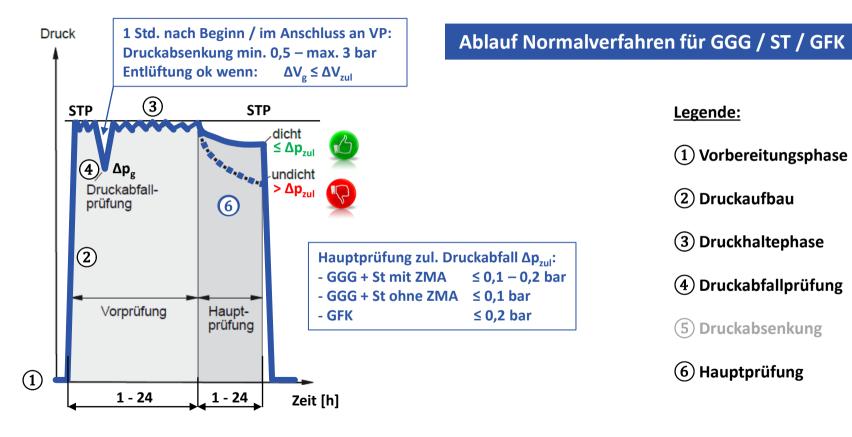
- Ausführung während oder sofort im Anschluss an Vorprüfung
- Entnahme und messen Wassermenge ΔV_g
- Druckabfall Δp_g messen (min. 0,5 bar / kleine DN und kurze Prüflängen >1 bar erforderlich / max. 3 bar)
- Volumenänderung ΔV_{zul} nach Gleichung (5) berechnen (W4, Teil 3) (in Druckprobeprotokollen **automatisiert**!)
- Ausreichende Entlüftung liegt vor, wenn:

$$\Delta V_g \leq \Delta V_{zul}$$

Normalverfahren (GGG, Stahl, GFK)

Prüfwerte		Vorprüfung		Hauptprüfung		Zul. Druckabfall	
Rohr- werkstoff	MDP [bar]	DN	STP [bar]	Zeit [h]	STP [bar]	Zeit [h]	Δp _{zul} [bar]
GGG/ST m. ZMA	10/16/>16	< 400	15/21/<21	24	15/21/>21	3	0.1/0.15/0.2
GGG/ST m. ZMA	10/16/>16	400 bis 700	15/21/<21	24	15/21/>21	12	0.1/0.15/0.2
GGG/ST m. ZMA	10/16/>16	>700	15/21/<21	24	15/21/>21	24	0.1/0.15/0.2
GGG/ST o. ZMA	10/16/>16	< 400	15/21/<21	1	15/21/>21	3	0.1
GGG/ST o. ZMA	10/16/>16	400 bis 700	15/21/<21	1	15/21/>21	12	0.1
GGG/ST o. ZMA	10/16/>16	>700	15/21/<21	1	15/21/>21	24	0.1
GFK	10	alle	15	6	15	1	0.2

Normalverfahren - Ablauf



Hauptprüfung bei GGG-, Stahl- und GFK-Leitungen

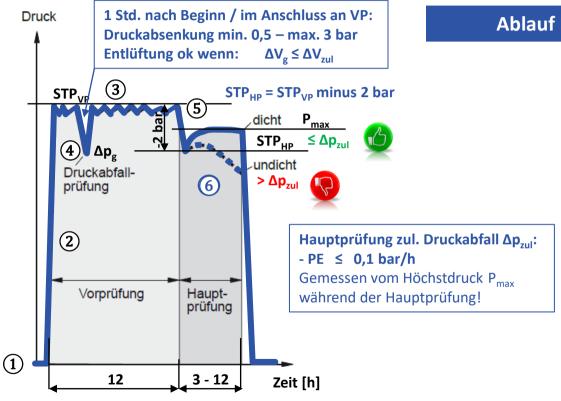
- Nach erfolgreicher Druckabfallprüfung STP wiederherstellen
- Hauptprüfung mit Prüfwerten gemäss Tabelle 7 (W4, Teil 3) durchführen
- Zulässiger Druckabfall Δp_{zul} (Material abhängig):
 GGG und Stahl mit ZMA 0,1 / 0,15 / 0,2 bar (STP 15/21/>21)
 GGG und Stahl ohne ZMA 0,1 bar und GFK 0,2 bar
- → Hauptprüfung bestanden «Leitung dicht» wenn:
 - Gemessener Druckabfall Δp_g < Δp_{zul} max. zulässiger Druckabfall

Ablauf Normalverfahren

Normalverfahren (PE)

Prüfwerte		Vorprüfung		Hauptprüfung		Zul. Druckabfall	
Rohr- werkstoff	MDP [bar]	DN	STP [bar]	Zeit [h]	STP [bar]	Zeit [h]	Δp _{zul} [bar/h]
PE100 SDR11	10/16	<150	15/21	12	13/19	3	0.1 **
PE100 SDR11	10/16	150 - 400	15/21	12	13/19	6	0.1 **
PE100 SDR11	10/16	> 400	15/21	12	13/19	12	0.1 **
PE100 SDR17	10	<150	12	12	10	3	0.1 **
PE100 SDR17	10	150 - 400	12	12	10	6	0.1 **
PE100 SDR17	10	> 400	12	12	10	12	0.1 **

Normalverfahren - Ablauf



Hauptprüfung bei PE-Leitungen

- Nach erfolgreicher Druckabfallprüfung STP um 2 bar absenken
- Druckabsenkung -> sofort Kontraktion mit leichtem Druckanstieg
- Hauptprüfung mit Prüfwerten gemäss Tabelle 7 (W4, Teil 3)
- Zulässiger Druckabfall mit PE-Rohren Δp_{zul} 0,1 bar/h
- Δp_{zul} bezieht sich auf den Höchstdruck P_{max}, der sich während der Hauptprüfung einstellt
- → Hauptprüfung bestanden «Leitung dicht» wenn:
 - Gemessener Druckabfall $\Delta p_g < \Delta p_{zul}$ max. zulässiger Druckabfall

Ablauf Normalverfahren

Ablauf Normalverfahren für PE

Legende:

- 1 Vorbereitungsphase
- (2) Druckaufbau
- (3) Druckhaltephase
- 4 Druckabfallprüfung
- (5) Druckabsenkung
- **6** Hauptprüfung

Sicherheitsaspekte bei Druckprüfung

ALLGEMEINE SICHERHEITSASPEKTE

- KEINE Arbeiten im Graben während der Druckprüfung
- Armaturen offen / Belüftungsvorrichtungen geschlossen (Bsp. Hydranten!)
- Auf Absperrorgane max. Prüfdruck PFA x 1.1 / PFA 16 = 17.6 bar (Nach EN 1074-1, Prüfung Sitzdichtheit bei max. Differenzdruck)
- Nach Druckprüfung langsam entspannen -> entleeren bei geöffneten Belüftungseinrichtungen

Sicherheitsaspekte bei Druckprüfung

SICHERUNG und VERFÜLLUNG der Leitung

- Verfüllen der Verbindungen ist freigestellt (Vorgaben Bauablauf, Platzverhältnisse, Verkehr, usw. beachten)
- Leitung vor Verschiebung schützen (Leitungsenden), falls nötig, mit Verfüllmaterial abdecken
- Abschlussteile sichern/abstützen (Kappen, Zapfen, usw.)
- Ausreichende Festigkeit allfälliger Betonwiderlager
- Belastungsverteilung gemäss zulässiger Bodenpressung

Sicherheitsaspekte bei Druckprüfung

TEMPERATUREINFLUSS

- Temperatureinfluss während Prüfzeit gering halten (Bsp. vor Sonneneinstrahlung schützen)
- Konstante Anfangs- und Endtemperatur der Rohraussenwand gewährleisten
- Bei PE-Rohren Prüftemperatur ≤ 20°C (Achtung, mögliche Vorschädigung des geprüften Rohrabschnitts!)

Fragen oder Anregungen zum Normalverfahren?

Weiterbildungskurse 2022

Praxis-Demo Druckprüfung

5. Kontraktionsprüfung und Sichtprüfung von Hausanschlüssen

Referent

Markus Portmann

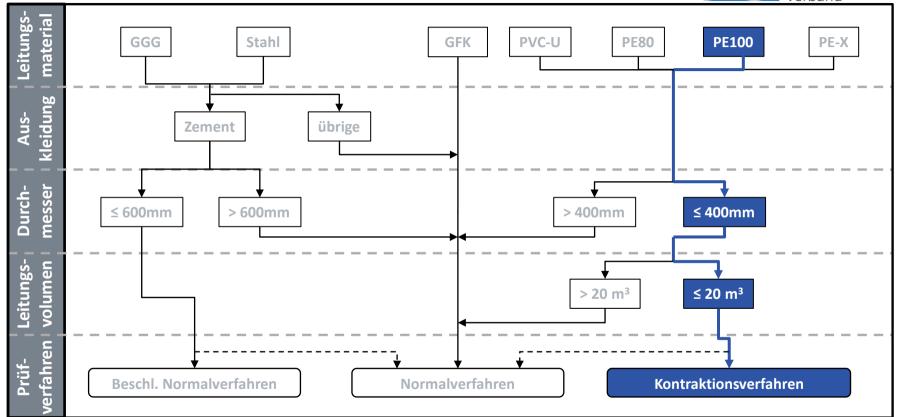
Brunnenmeister
Markus.portmann@urdorf.ch

Wasserversorgung Urdorf

Bahnhofstrasse 46 8902 Urdorf/ ZH

Markus
Portmann
Kontraktionsverfahren

VKR?


Verband Kunststoff-Rohre und –Rohrleitungsteile

"Wir stellen die Qualität von hochwertigen Rohrsystemen sicher«

- Tradition: Besteht seit fast 30 Jahren.
- Schweizweit: In PE-Schweisskursen wurden in 3 Sprachregionen bereits ca. 7000 PE-Schweisser ausgebildet.
- Herstellerneutrale, aktuelle Fachinformation für Wasser & Gas Versorgung, Kanalisation und Kabelschutz kostenlos auf <u>www.vkr.ch</u> verfügbar.
- VKR-Mitgliedsfirmen beschäftigen in der Schweiz direkt ca. 1500 Mitarbeiter.
- VKR-Mitgliedsfirmen stellen aus Recycling-Material jährlich ca. 20 000 Tonnen Kabelschutzrohre her, die mit <c+s> Gütesiegel überwacht sind.

Verfahrensübersicht

Richtlinien Druckprobe

SVGW-Richtlinie W4:

Dichtheitsprüfung bei **jeder Rohrleitung** durchführen!

- Kontraktionsverfahren: PE ≤ DN 400 oder Volumen ≤ 20m³.
- Grössere Nennweiten bzw. grössere Volumen Normalverfahren.

Gesamte Rohrleitung inkl. Verbindungen & Armaturen prüfen!

Prüfdruck bestimmen

MDP= Systembetriebsdruck

STP = Systemprüfdruck

Bei nicht berechnetem Druckstoss (meist der Fall) gilt:

$$STP = 1.5 \cdot MDP_a$$

$$STP = 1.5 \cdot MDP_a$$
 oder $STP = MDPa + 5.0 bar$

Jeweils kleineren Wert wählen!

PF100 SDR11:

 $STP_{SDR11} = 1.5 \cdot 16bar = 21bar$

PE100 SDR17:

$$STP_{SDP17} = 1.5 \cdot 10 bar = 15 bar$$

Maximalwert bei **PE100 SDR17** beachten: **STP**_{20°C} ≤ **12 bar**

Prüftemperatur PE-Rohre

Bei PE-Rohren Prüftemperatur ≤ 20°C

Sonst **Vorschädigung** des geprüften Rohrabschnitts!

Praxis-Beispiel: PE100 d_n315 SDR 11

T_{Umgeb} = 32°C

→ T_{OB-Rohr} ~ 60°C

STP = 21 bar

Direkt in der Sonne nicht eingedeckt!

Was passiert?

Durchführung der Kontraktionsprüfung

Während Druckprüfung vor Temperaturerhöhung/
 Sonneneinstrahlung schützen

- Temperatur an der Rohraussenwand ≤ 20 °C
- → Rohrleitung bereits eindecken, aber kritische Verbindungsstellen noch <u>offen</u> lassen.

Vorprüfung (Festigkeitsprüfung)

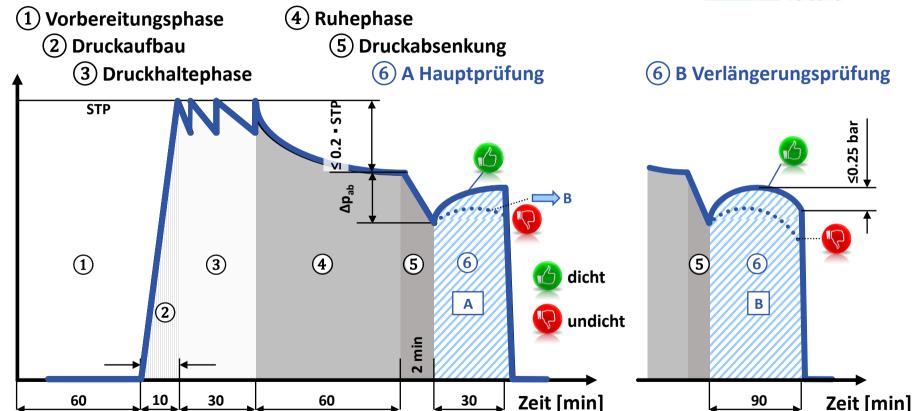
- Leitung vom Tiefpunkt befüllen und am Hochpunkt entlüften
- 60 min. Entspannungszeit (Armatur am Hochpunkt öffnen)
- Leitung verschliessen
- Prüfdruck innerhalb von 10min aufbringen
- Prüfdruck durch ständiges Nachpumpen über 30min. halten
- Nach Ruhezeit von 60min. darf Druck um ≤ 20% absinken

Hauptprüfung mit integrierter Druckabfallprüfung

-1-

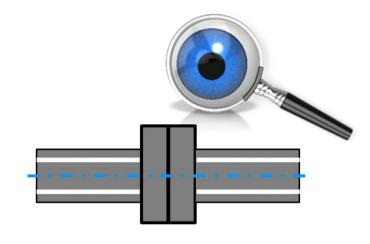
- Druck innerhalb 2 Min. um Δp_{ab} absenken
- abgelassene Wasservolumen ΔV_{ab} messen
- Ausreichende Entlüftung liegt vor, wenn:

$$\boxed{1} \Delta V_{ab} \leq \Delta V_{zul}$$


Hauptprüfung mit integrierter Druckabfallprüfung

- Druckabsenkung führt zu sofortiger Kontraktion des PE-Rohrs mit leichtem **Druckanstieg**.
- Im Zweifelsfall Prüfzeit bis 1,5 Stunden verlängern. Dann aber **Druckabfall vom Maximalwert ≤ 0,25 bar**
- → Hauptprüfung bestanden, wenn sowohl
 - Bedingung der Druckabsenkungsprüfung (1)
 - als auch die der Dichtheitsprüfung (2) erfüllt sind

Ablauf Kontraktionsprüfung



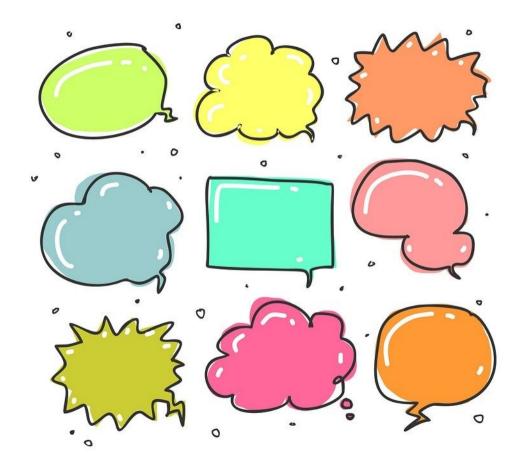
Sichtverfahren - Bedingungen

- bei kurzen Leitungen (<30m)
- Bei nachträglichen Anschlüssen
- Anschlussleitungen ≤ d_n63
- Nach Reparaturarbeiten

Sichtverfahren - Ablauf

- Unter Betriebsdruck (OP)
- Verbindungsstellen noch offen liegend
- Verbindungsstellen beobachten
- 2 Sichtkontrollen im Abstand > 1h
- Dokumentation mit Protokoll und ggfs. Fotos

Fragen oder Anregungen zu Kontraktionsverfahren?


Fazit

- Die verschiedenen Verfahren erlauben einen optimierten Ablauf, ohne technische Kompromisse eingehen zu müssen
- Die **Prüfgeräte** müssen die Vorgaben der SVGW W4 wiedergeben können
- Die Sichtprüfung kommt nur in Ausnahmefällen zur Anwendung
- Dem Befüllen der Leitung kommt bei allen Verfahren eine besondere Bedeutung zu
- Bei der Arbeitssicherheit sind keine Kompromisse zulässig
- **Temperatur- und Lufteinfluss** verfälschen das Ergebnis
- Die **Dokumentation** dient der Nachvollziehbarkeit und soll vollständig sein. Der SVGW stellt hierzu Formulare zur Verfügung

Diskussion

